
sBITX – An open source SDR that you can hack

- By Ashhar Farhan, VU2ESE

Here how to convert your existing homebrew radio into a full-fledged SDR for less than
$100.

The idea of hybrid architecture was first implemented in this form by Bob Larkin in his
seminal work with DSP-10 transceiver. The details are in the ARRL book Experimental
Methods in RF Design and its accompanying CD. An open secret about the EMRFD is that
it is also an excellent introduction to Digital Methods and Bob is a great teacher. I spent a
rainy day in Portland with Bob discussing radio and life and that evening we were joined
by Jeff Damm (WA7MLH) for an early dinner. This project was born that evening.

Here are the headlines:

● Based on Raspberry Pi inside your radio
● Open source, plain C code that is easy to read, understand and change
● Adaptable to any superheterodyne radio that you may already have built
● Based on hybrid architecture
● Uses the simpler Fast Fourier Transforms in place of RF phasing systems

This article is divided into three parts:

1. Our Game Plan
We will set out how we are going to build an SDR leveraging our skills with
conventional superhet analog radios

2. The Software
This describes the very core of the software, line by line. Transmit and Receive is
broken down to make it easy to understand.

3. SDR for the uBITX
We now adapt a standard QRP superhet (the uBITX) to become a full featured SDR.

Our Game Plan

There are many ways to build SDRs, (See the compact and informative presentation by
Howard White, KY6LA at https://nparc.ca/wp-content/uploads/2019/06/Four-
Generations-of-SDR.V3.0.pdf)

There are two standard approaches to building a software defined radio today:

1. Direct Digital Conversion : The radio directly digitizes the RF right at the front-end.
For an HF radio, it can generate 60 million samples per second. Handling data at such
speed needs specialized circuitry built using FPGAs (Field programmable gate arrays) in
addition to a PC.

To build this kind of radio, you need multilayer boards, FPGA programming skills and also
some money. This is clearly not what we want to do.

2. Phasing Radio : Two identical (called In-phase and Quadrature) direct conversion
radios are used, both operated by the same local oscillator. However, the local oscillator
drive to the Quadrature radio is delayed by exactly 90 degrees. The baseband audio from
both the channels is fed to the two stereo inputs of an audio codec and the SDR software is
run on a moderately fast CPU at audio frequencies.

The phasing radio has two main challenges. First, it needs a very precise 0 and 90 degree
RF phase difference between the two channels. Second it also needs exactly similar audio
gain and audio phase delays in both the channels. Even a 0.01 degree phase difference can
degrade the opposite sideband suppression horribly. A nominal ladder filter made from 6
microprocessor grade crystals could do a far more efficient job than the most complex SDR
front-ends. Every capacitor in the radio’s signal chain can change the phase and amplitude
balance before it gets into the PC. Maintaining this over a large set of frequencies is a
challenge especially if you are as sloppy a builder as I am.

Our approach is a hybrid one. On receive, using superhet architecture, we will bring out a
25 KHz slice of RF spectrum down to a low IF centered around 25 KHz (extending from
12.5 KHz to 37.5 KHz). A 24-bit audio codec running at 96000 samples/second will bring
this digitized audio into the Raspberry Pi.

To transmit, we will generate the SSB/CW/FM/AM signal in software for a carrier
centered around 25 KHz. We will upconvert this signal to the RF frequency of choice.

Engineering is the art of negotiation with science and economy. Our compromise is on
limiting the maximum width of the waterfall to 25 Khz. Though this is not a major
compromise, the experience shows that this waterfall is enough for the most. Rob
Sherwood, NC0B, (known for his list of high performing radios) says that he prefers a 10
KHz wide spectrum when operating contests.

With this limitation in place, we can build an SDR that will run circles around those that
cost thousands of dollars. This architecture was first implemented by Bob Larkin, W7PUA
in his now famous DSP-10 transceiver it was copied by many commercial transceiver
including the Elecraft K3 line, the FTDx-101D, etc. The links to his amazing series of
articles are at the ARRL’s SDR page on http://www.arrl.org/software-defined-radio.

The DSP-10 is almost a quarter century old design now and the sbitx is a tribute and a
reboot of the original.

So here is the game plan. We start with a standard superhet design that you would have
already built or bought as shown in Figure 1.

We will now modify this for the SDR.

1. Change the IF from 9 MHz to 27 Mhz in order to accomodate 25 KHz IF
bandwidth. Most of our IF amplifiers are broadband and just changing the crystal
filter will be enough. We choose 27 Mhz as the new IF frequency as we can build 25
Khz wide crystal filters at this frequency.

2. Change the local oscillator frequency to convert the incoming signal to 27 Mhz.
To receive a 14 MHz signal, the local oscillator will have to now run at (27 + 14) 41
MHz.

3. The BFO is also moved to a new frequency such that it is 25 KHz away from the
center of the crystal filtr. In our build, the center of the crystal filter passband was
27.005 Mhz, accordingly, the BFO was set to 27.030 MHz. With this BFO setting,
the signals coming out of the 27 MHz filter are converted to a spectrum from 12.5
Khz to 37.5 KHz.

4. Open up the audio amplifier and remove any low pass filtering so that it handles
frequencies up to 40 Khz.

5. Route the output of the audio preamp to a 24-bit, Wolfsun audio codec that

14 MHz
BPF

2nd
Mixer

9 MHz
SSB
FILTER

IF AMPMIXER

LOCAL
OSC

BFO

CW at
14.060 MHz

IF at 9 MHz

5.060 MHz

8.999 MHz

1 KHz

AF AMP

Figure 1

http://www.arrl.org/software-defined-radio

samples at 96 Khz. The audio codec is in turn controlled and connected to a
Raspberry Pi 4.

6. The Raspberry Pi is loaded with the SDR software. It can also be loaded with
WSJT-X, your favourite logger, fldigi and anything else you might wish for.

The modified superhet is presented in Figure 2. Let’s examine it closely.

First thing that you will notice here is that the crystal filter is centered on 27.005 Mhz. All
the ladder filters are essentially low pass filters and exhibit the center of the passband at a
slightly lower than marked frequency of oscillations. You can consider the ladder filters as
an evolution of low pass filters where the inductors are replaced by the crystals.

Microprocessor grade, low cost 27 Mhz fundamental mode crystals are now regularly
available at very reasonable prices. We measured the motional inductance of the junk box
27 MHz crystals as 0.0038 H. A Min-Loss crystal filter was developed as shown in Figure
3.

TUNING CONTROL

14 MHz
BPF

2nd
Mixer

27.005 MHz
25 KHz BW
FILTER

IF AMPMIXER

LOCAL
OSC

BFO

CW at
14.060 MHz

IF at 27.005 MHz

41.060 MHz

27.030 MHz

37.5 Khz
to 12.5 KHz

AF AMP

WM8731
96 KHz codec

Raspberry Pi 4
with 7 inch display

 7" Display

Figure 2

This crystal filter has a very steep response on the higher side. The measured response
from the filter is in Figure 4. Sharp homebrewers will notice the filter ripple in the sweep

Figure 3

Figure 4

Figure 3

Figure 5

image, it was eliminated after resoldering a capacitor). You will note that there is a very
sharp attenuation of almost 70 db on the upper side (refer to Marker 4 in Figure 4). We
must place our BFO above this frequency (27.030 Mhz in our case).

A BFO configured with two crystals in parallel and a 1pf capacitor in series can easily pull
the frequency by the required kHz and yet exhibit nominal crystal stability. We have been
able to replicate this BFO with many sets of crystals. A VXO candidate that we have built
and tested is shown in Figure 5.

If your radio generates BFO from a programmable oscillator like the Si5351, then you
wouldn’t need to make a fresh BFO, you cans imply reprogram clock to a frequency
between 27.027 and 27.031 Mhz, setting it 25 KHz away from the middle of your crystal’s
passband.

Let’s now consider the WM8731 codec. The audio codecs produce and consume data at a
very high rate. At 96,000 samples in two channels of 24 bits, every second, they have to
transfer (96,000 x 2 x 24 = 4,608,000 bits per second) in each direction between the codec
and the CPU. A serial bus called the I2S bus (not to be confused with the I2C!) is used to
transfer data continuously between the CPU and the codec chip.

The I2S is a serial bus, and all the bits of each sample are sent one after another over a
digital line. Two such digital lines are needed, one in each direction. The MISO line
transfers data from the codec to the CPU and the MOSI line transfers the data from the
CPU to the codec. The bits are transferred to the beat of the BCLK line on pin 3.

To maintain accurate timing, a crystal clock running at 12.288 Mhz is used along with the
codec on pins 25 and 26. This crystal is a common crystal available from Mouser.com and
other suppliers.

When data is being transferred serially at such speeds, it is easy to miss a bit and lose track
of where each audio sample begins as all bits look the same. Hence, to mark when a left or
a right channel data begins, yet another line is used that goes low on the left channel and
high on the right channel. We configure the WM8731 to use the same clock for capture and
playback, hence the pins 5 and 7 are tied together as the left/right clock (LRC). These four
lines, the BCLK, MISO, MOSI, LRC, together handle the digitized data transfer between
the codec and the Raspberry Pi. A two line interface of I2C is used to control codec
parameters like volume, gain, etc. The code to initialize and use the codec is given in the
repository at https://github.com/afarhan/sbitx/blob/main/sbitx_sound.c.

We hide away all the complexity of configuring the codec and the SDR programmer has to
just handle a single function sound_process(). This function is repeatedly called each
time a new pair of 1024 samples arrive from the input of the codec. In turn, it returns back
a pair of 1024 samples to be playback to the earphones / line-out.

https://github.com/afarhan/sbitx/blob/main/sbitx_sound.c

The Digital board piggybacks on a Raspberry Pi 4. Even an older Raspberry Pi could be
used if you have one lying around, though an old RPi might not be able to decode WSJT-X
in deep mode while simultaneously running the SDR. You can save yourself some trouble
of buying and soldering WM8731 (it is an SMD, a large one as far as SMDs go) and just buy
an assembled audio codec board from Mikroelektronika (https://www.mikroe.com/audio-
codec-proto-board) for $19.00 USD. We highly recommend this approach.

There are a few subtle details in the digital codec board.

- The WM8731 has two grounds : The analog ground that is used as reference for the audio
and the digital ground that is used as reference to the digital interface with the CPU. This
keeps the digital noise of the Raspberry Pi isolated from the analog circuitry. If you are
laying out your own PCB, keep the two grounds separate and connect them through thin
tracks. Each side should have its own bypass capacitors. The WM8731 has its own linear
regulator (U9). The codec consumes just a few milliamps of current and a linear regulator
has far lower noise than a switching regulator. Read the WM8731 datasheets for more
pointers.

- The WM8731 needs a 12.288 MHz crystal. They are available from mouser.com. When we
first fired the codec, there was a 18 KHz constant carrier. It was later traced to fifth
harmonic of the BFO (at 27.030 MHz x5 = 135.150 Mhz) beating with the 11th harmonic of
the codec crystal (12.288 MHz x 11 = 135.168 Mhz) giving an 18 KHz beat. Adding a 10pf
capacitor in series with the crystal pulls it up by 3 KHz to 12.293 Mhz, now the beat
frequency will be (12.291 x 11 – 27.030 x 5 =)51 KHz, well outside the audio bandwidth of
the 48 KHz. You may have to make this modification if you use an assembled board such as
the one from Mikroelektronika.

- The Left Line-In channel takes in the signals now converted to a passband between 12.5
KHz and 37.5 KHz from the receiver, processes the signals in the RPi and plays the

Figure 6

https://www.mikroe.com/audio-codec-proto-board
https://www.mikroe.com/audio-codec-proto-board

demodulated signal through the left earphone output.

- The Right Line-In channel takes the microphone audio, processes the audio in the RPi
and plays out the modulated carrier at 24 KHz through the right earphone output to the
modulator that raises it to 27 MHz.

- The radio is controlled through a number of digital lines. These can be used to switch
between transmit/receiver, change band pass/low pass filters, etc. These are available on
J2 connector

- The current front-panel has two rotary encoders and a 7 inch TFT capacitive touch screen
(sold by Raspberry Pi). There are spare lines for a third encoder or three switches.

- The Raspberry Pi and the display together can consume upto 1.5 A of current at 5v. We
used an LM2569 based buck converter from an online vendor. A pair of 33 uh inductors
were added in series with input and output pins to eliminate switching power noise. The
regulator is set to idle at 5.5V as the Raspberry Pi complains of low voltage if the power
load brings down the 5v line ever so slightly.

The Raspberry is connected to the touch display through the DSI strip connector. The
display needs a separate +5v power connection.

With the hardware architecture in place, we are now in a position to convert a 25 KHz slice
of spectrum from the antenna to a low IF centered extending from 12.5 KHz to 37.5 KHz
and digitizing it into the Raspberry Pi for signal processing. Similarly, on transmit, we will
generate a signal between 12.5 KHz to 37.5 KHz and upconvert it to the RF frequency of
choice.

The Software

Reading even the best of the texts on digital signal processing can make your head spin. if
you do want to read, the freely available DSP Guide on www.dspguide.com is highly
recommended.

Here, instead of discussing dry theory, we will take a radically different approach to
understanding how SDRs work by strolling through the live code. The Table 1 is not
pseudocode, it is the actual working receiver source code from our SDR! The code may
change by the time you read this, but the general scheme will remain more or less the
same. You can see the latest version of this code on
https://github.com/afarhan/sbitx/blob/main/ubitx.c.

We will step through the function called rx_process(), the variables and other functions
are all well described and documented in the rest of the source file, it is vital to understand
the main routines of rx_process() and tx_process() and then look at how the other
supporting functions help.

The kind of software method we use in our SDR is called convolution filtering. It is actually
a simpler way to deal with signals compared to the normal approach of using writing FIR
filters to introduce phase delays, etc.

Before we can understand the main routine, we need to grasp three concepts.

https://github.com/afarhan/sbitx/blob/main/ubitx.c
http://www.dspguide.com/

Concept 1: The FFT spectrum is circular

Let’s have a working knowledge of the nature of Fourier Transform (FFT = Fast Fourier
Transform). You can read more about this and download the code to perform them from
www.fftw.org.

Our FFT routine converts the incoming signal samples into a spectrum and stores it in an
array of bins held in fft_out[]. Each bin will hold the amplitude and phase of that bin’s
central frequency. For a bandwidth of 48 KHz that is represented in 1024 samples, each
bin acts as a band pass filter of exactly (48000/1024=) 46.875 Hz.

Consider the central frequency of 24 KHz as the zero point where our hypothetical BFO is.
Frequencies above these are considered positive (The upper sideband) and those below
are considered negative (The lower sideband). At fft_out[0] the values of amplitude and
phase corresponds to 24000 Hz, from here the frequency increases and when we reach
fft_out [256], it would have the values corresponding to a frequency of +36 KHz and so
on until fft_out[511] corresponds to 43,953 KHz (exactly one bin below 48,000 Hz).

From fft_out[512] onwards, a weirdness sets in, the bin at fft_out[512] corresponds to
zero KHz! You can also think of zero KHz as being 24,000 Hz behind the central frequency
of 24 KHz as well. From fft_out[513] onwards the frequency keeps increasing towards
the central frequency with fft_out[768] corresponding to 12 KHz and by the time you
reach the last bing of fft_out[1023], you just behind the central 24 Khz by 46 Hz.

Stare at Figure 7 to understand this. Re-read the two paragraphs above to understand this
arrangement if necessary.

If you want to see a really beautiful, animated explanation of complex frequencies, your
best bet is to watch https://www.youtube.com/watch?v=r18Gi8lSkfM.

Concept 2: In frequency domain, just multiply the spectrum with the filter shape

A simplistic way to filter in frequency domain is to zero out all the values in the fft_out
bins corresponding to those that are outside the passband and convert the frequency
domain bins back to time domain with a reverse FFT.

This almost works, except that it doesn’t work very well.Sine waves are supposed to
oscillate continuously, forever. The block of samples we are feeding into the FFT starts and
ends abruptly at the beginning and end of the 1024 samples. This results in a smearing of
the frequencies across the bins. You need to include frequency bins adjacent to your
passband as well.

The solution to this smearing is called Windowing. Instead of abrupt cutting-off of the
sides of a filter, you gently taper off the amplitudes on both sides of the passband. Figure

fft_out[0] fft_out[256] fft_out[512] fft_out[768] fft_out[1023]

24000 Hz 48,000 Hz 0 Hz 12000 Hz 23,953 Hz36000 Hz

Figure 7

http://www.fftw.org/

8 shows this graphically.

The filtering has to work in two steps.

In the first step, we generate the filter shape of the kind outlined in the right most graph of
Figure 7. Thankfully, our mentor Phil Karn, KA9Q, has written these routines for us. They
are in the fft_filter.c. These filters need to be generated just once for every bandwidth
setting. There are various kinds of windowing functions and we use a simple one called the
Kaiser window.

In the second step, the filter shape is simply multiplied with the spectrum. If a bin gets
multiplied by 1, it goes through, if a bin is multiplied by zero, it gets killed, a bin multiplied
by a coefficient between 0 and 1 gets attenuated.

Filtering in frequency domain is really simple. Just design your filter shape and multiply it
with the frequency bins.

Concept 3: Overlap and Save/Discard

Consider that there are 1024 samples that represent a single continuous sine wave. When
we perform an FFT over these samples, we expect to see a single pip in the spectrum
corresponding to the frequency of the sine wave and zero everywhere else. However, when
we actually notice the spectrum, it is not clean because the sine wave starts abruptly at the
first sample. The abrupt start can litter noise across the spectrum (like a sudden burst of
noise streaks the SDRs’ waterfalls). This is a parallel of the problem we outlined in our
Concept 2.

The solution is to perform FFT on 2048 samples instead of the 1024 samples. You take
1024 samples from a previous block, append the new block of 1024 more samples and
perform FFT on this total of 2048 samples, bringing them into the frequency domain. We
do all the frequency processing, and perform an inverse FFT to get back the 2048
processed time samples. The first 1024 samples will have the abruptness that we spoke
about. The second set will be clean because the abruptness was 1024 samples ago and long
smoothened out.

The original time samples are then stored away for the next iteration of processing. This
scheme of processing to eliminate the noise is called the Overlap-and-discard or Overlap-
and-Save scheme.

Bw required Bw required

Zeroing unwanted
frequencies doesn't work

Unfiltered Spectrum

Bw required

Windowed response
This works

Windowed Filter in Frequency Domain

Figure 8

This is illustrated in Figure 9.

The much promised walkthrough

With the three concepts cleared up, we can begin our code walkthrough. Refer to the Table
1.

Whenever 1024 new samples are ready from the codec, our sdr calls the rx_process().
The samples are passed in an array pointed to by input_rx, the parameter n_samples will
hold the samples count (fixed at 1024 for now).

STEP 1

Our first order of business is to prepare for Overlap-and-Discard. We assemble 1024
samples into fft_in[] from the previous call to rx_process() in STEP 1. The previous
samples are stored in an array called fft_m. It is callled fft_m because real FFT jocks call
previous samples M, we follow.

Note that the samples received from the sound card were integer and these are scaled to
floating point dividing them by 200,000,000.

STEP 2

While we append the fresh coming samples to the fft_in array, we notice something

Previous M samples in
bins 0-1024

Convert to Frequency Domain
with FFT

Convert back to Time Domain
with inverse FFT

Fresh N samples in
bins 1024-2047

 Junk the samples 0 - 1024 Use samples 1024 - 2048

Process in Frequency Domain

2048 time bins

2048 frequency bins

2048 frequency bins

Store as M samples
for the next batch

Figure 9

exciting - We are dealing with complex numbers! If this was an SDR that generated I and Q
channels we would be assigning each of the I and Q samples to the real and imaginary
components of each bin. However, in our case, the crystal filter takes care of the IF image
and we filter the signals within the 25 KHz passband using the FFT, so we can safely zero
the Q channel and write the incoming samples to the real part of the fft_in[] array bins.
Notice that we also store the incoming samples back into the fft_m[] array for the next
time rx_process() is called.

STEP 3

The fft is executed according to a ‘plan’. In fftw library, the ‘plan’ is a preset collection of
variables (like how many samples, how many dimensions) that have to be specified in each
call to the FFT functions. Using a plan saves the hassle of having to specify it in every call.
We initialize the fft plans in fft_init() function elsewhere in the same source file..

Our time samples are now converted into a spectrum with just one line of code by calling
fft_execute(). The output of the fft_execute() are the frequency domain values; these
are stored in fft_out[] array.

Wait, this is pure magic: we are barely on the 15th line of our SDR code and we already have
a spectrum for display and waterfall!

The spectrum will have a little bit of smudginess that can be cleared by a four lines of code
that I have removed to keep the distractions away from understanding the basic SDR flow.
The spectrum display code can be read from the original source file.

STEP 4

The FFT output is organized as illustrated in Figure 7. When you want to bring in a signal
at, let’s say 10,000 KHz down to 0 Hz, in a direct conversion receiver we do it by mixing. In
our convolution SDR, we simply shift the frequency bins around until the bins
corresponding to 10,000 Khz is now at fft_bin[512].

There is a very important “gotcha!”. We said it has to be brought down to 0 Hz, not bin[0].
If you look at the Figure 7 again, you will see that the 0 Hz is at at fft_out[512] and not at
fft_out[0].

The variable r->tuned_bin holds the ‘needle’ of our radio’s dial that points to the
frequency that we want to convert to base-band. A simple loop shifts all the bins around by
r->tuned_bin times.

STEP 5

We proceed to eliminate the other side band. Look at the Figure 7 again. This is a picture
worth a thousand words. Now, imagine that a signal that was at 10,000 Hz needed to be
shifted to bin [512]. Accordingly, the signals that were below 10,000 Hz would have shifted
to less bins below 512.

So, here is the catch : Once the bins are rotated, all the bins below 512 are lower sideband
and those above 512 are upper sideband. To eliminate either side band, we simply zero it.

STEP 6

We now have our signal located starting at zero Hz, opposite sideband eliminated by brute
force and all we have to do is to limit this signal to our desired pass band. The filter
coefficients for the passband are already precalculated and stored in r->filter-
>fir_coeff[] array. We simply multiply the two arrays together.

To see how the FIR filter is calculated, read https://github.com/afarhan/sbitx/blob/main/
fft_filter.c. Most of the code is written by Phil Karn, KA9Q. It is brilliantly simple. We must
digress to understand how beautiful and simple it is.

Phil starts by taking an empty array of complex frequencies. THe sets it to ‘1’ in those
frequencies that should allow signals to pass through and zeros out those where the signal
should be blocked. This brickwall filter is converted back to time domain by a call to the
FFT routine. To the resulting time domain signal a windowing function is applied and
converted back to the frequency domain by a second call to the FFT routine.

If you are curious, you can read how he does it in the filter_tune() and
window_filter() from fft_filter.c.

STEP 7

We are done with everything now, all we have to do is apply the FFT again to shifted and
filtered frequency domain bins of r->fft_time[] and convert them back to time domain.
The last FFT call leaves the time samples in the r->fft_time[] array.

STEP 8

We apply AGC to the time domain signal . The AGC is not shown in this source code but is
available in the ubitx.c. We have implemented the algorithm explained by Gerald
Youngblood, K5SDR in his seminal series of papers (ibid). It is a fairly simple function
though at present, it generates a ‘pop’ on strong signals. We will have this debugged by the
time you are reading this paper.

STEP 9

We finally ship the audio samples off to the earphones to be played back to the operator.
Whew.

https://github.com/afarhan/sbitx/blob/main/fft_filter.c
https://github.com/afarhan/sbitx/blob/main/fft_filter.c

void rx_process(int32_t *input_rx, int32_t *input_mic,
int32_t *output_speaker, int32_t *output_tx, int n_samples)

{
int i, j = 0;
double i_sample, q_sample;

//STEP 1: first add the previous M samples to
for (i = 0; i < MAX_BINS/2; i++)

fft_in[i] = fft_m[i];

//STEP 2: then add the new set of samples

int m = 0;
for (i= MAX_BINS/2; i < MAX_BINS; i++){

i_sample = (1.0 *input_rx[j])/200000000.0;
q_sample = 0;

j++;

__real__ fft_m[m] = i_sample;
__imag__ fft_m[m] = q_sample;

__real__ fft_in[i] = i_sample;
__imag__ fft_in[i] = q_sample;
m++;

}

// STEP 3: convert the time domain samples to frequency domain
fftw_execute(plan_fwd);

//STEP 4: we rotate the bins around by r-tuned_bin

struct rx *r = rx_list;

for (i = 0; i < MAX_BINS; i++){
int b = i + r->tuned_bin;
if (b >= MAX_BINS)

b = b - MAX_BINS;
if (b < 0)

b = b + MAX_BINS;
r->fft_freq[i] = fft_out[b];

}

// STEP 5:zero out the other sideband
if (r->mode == MODE_LSB || r->mode == MODE_CWR)

for (i = MAX_BINS/2; i < MAX_BINS; i++){
__real__ r->fft_freq[i] = 0;
__imag__ r->fft_freq[i] = 0;

}
else

for (i = 0; i < MAX_BINS/2; i++){
__real__ r->fft_freq[i] = 0;
__imag__ r->fft_freq[i] = 0;

}

// STEP 6: apply the filter to the signal,
// in frequency domain we just multiply the filter
// coefficients with the frequency domain samples
for (i = 0; i < MAX_BINS; i++)

r->fft_freq[i] *= r->filter->fir_coeff[i];

//STEP 7: convert back to time domain
fftw_execute(r->plan_rev);

//STEP 8 : AGC
agc(r);

//STEP 9: send the output back to where it needs to go
if (rx_list->output == 0)

for (i= 0; i < MAX_BINS/2; i++){
output_speaker[i] = cimag(r->fft_time[i+(MAX_BINS/2)]) * 1000000;
//keep transmit buffer empty
output_tx[i] = 0;

}
}

The transmit process works exactly the same way, but in reverse. We will quickly step

through it as well. If you have understood the rx_process(), the tx_process() is very
similar, the steps are in reverse order. Like our analog radios, the SDR code can be
bidirectional too!

The microphone input arrives at the right channel of the tx_process(), we take 1024
samples from the last call to tx_process, append another 1024 incoming samples to submit
a total of 2048 samples to the fft_execute(). While inserting the incoming samples, they
are scaled to become floating point values and they are backed up to be used in the
overlap-and-discard process for the next call to tx_process() as well. This is the Overlap-
and-Discard algorithm that we have already dealt with earlier.

The forward FFT converts these time samples into frequency bins.

The tx_filter->fir_coefficients[] are multiplied with fft_out[] to filter the signal to
keep modulation bandwidth within limits. Here it must be stressed that for LSB, you have
to apply a filter with the passband specified as (-3000 to -300) and for the upper side
band, the filter is set to (300 t0 3000). The lower sideband is made up of negative
frequencies!

Next, the other sideband is eliminated by zeroing it. We now have the SSB signal available
in fft_out[]. Except that it is centered at zero Hz.

We shift the signal up (for USB) or down (for LSB) the by tx_shift bins. With this shift,
the signal is now at the correct transmit frequency within the 48 KHz bandwidth of the
fft_out[].

The last step is to convert the signal back to time domain with a second call to
fft_execute() and copy the time samples to the output (right output channel of the sound
codec).

void tx_process(
int32_t *input_rx, int32_t *input_mic,
int32_t *output_speaker, int32_t *output_tx,
int n_samples)

{
int i;
double i_sample, q_sample;

// we are reusing the rx structure
struct rx *r = rx_list;

//first add the previous M samples
for (i = 0; i < MAX_BINS/2; i++)

fft_in[i] = fft_m[i];

int m = 0;
int j = 0;
//gather the samples into a time domain array
for (i= MAX_BINS/2; i < MAX_BINS; i++){

i_sample = (1.0 * input_mic[j]) / 2000000000.0;
q_sample = 0;

j++;

__real__ fft_m[m] = i_sample;
__imag__ fft_m[m] = q_sample;

__real__ fft_in[i] = i_sample;
__imag__ fft_in[i] = q_sample;
m++;

}

//convert to frequency
fftw_execute(plan_fwd);

// apply the filter
for (i = 0; i < MAX_BINS; i++)

fft_out[i] *= tx_filter->fir_coeff[i];

if (r->mode == MODE_LSB || r->mode == MODE_CWR)
// zero out the LSB
for (i = MAX_BINS/2; i < MAX_BINS; i++){

__real__ fft_out[i] = 0;
__imag__ fft_out[i] = 0;

}
else

// zero out the USB
for (i = 0; i < MAX_BINS/2; i++){

__real__ fft_out[i] = 0;
__imag__ fft_out[i] = 0;

}

//now rotate to the tx_bin
for (i = 0; i < MAX_BINS; i++){

int b = i + tx_shift;
if (b >= MAX_BINS)

b = b - MAX_BINS;
if (b < 0)

b = b + MAX_BINS;
r->fft_freq[b] = fft_out[i];

}

//convert back to time domain
fftw_execute(r->plan_rev);

//transmit output
for (i= 0; i < MAX_BINS/2; i++){

output_tx[i] = creal(rx_list->fft_time[i+(MAX_BINS/2)]) * volume;
output_speaker[i] = 0;

}
}

Together, rx_process() and tx_process() are each, a single page of code. It is pretty

much amazing how simple an SDR can be.

We shall skip how the user interface works, how we implement CW (as a tone injected into
the tx_process(), how the tuning works, etc. However, there are a number of things that
one can appreciate here:

- Adding features like Audio Passband Tuning is just a matter of providing user with a way
to generate a new set of coefficients for the r->filter->fir_coeff[]. You can experiment
with different types of windowing functions (Blackman, Kaiser, etc.). Instead of trying to
work the maths, just use the code and see what happens.
- The IF is at 25 KHz. You implement RX IF gain by multiplying (or dividing) the incoming
samples by a ‘gain’ variable.
- Similarly, you can adjust the transmit gain by just multiplying the time samples in the
last step of tx_process() to smoothen out the TX power output variation across different
bands.
- Noise blanker/Noise reduction systems are yet to be implemented.

SDR for the uBITX

Note: The latest and more expanded version of building the SDR version of uBITX will be
available on https://github.com/afarhan/sbitx . Potential builders should read the lastest
and more comprehensive details in that repository.

With our understanding of the software and hardware complete, we can know apply this
knowledge to modify a commonly homebrewed SSB superhet, the uBITX to become and
SDR. This is just an example of how a conventional radio maybe adapted to become SDR.
It will even have some features that are not present in any other SDR.

Reviewing the uBITX

The uBITX is a general coverage HF transceiver that can be built for $100 in new parts,
you can read all the details of the uBITX on https://www.hfsignals.com/index.php/ubitx-
v6/.

In Summary, the uBITX is a double conversion superhet. It uses a low pass filter to scoop
in the HF Spectrum (0-30 MHz) and up-converts it to 45 MHz. A nominal, two pole 45
MHz crystal filter feeds to a second mixer that converts the 45 MHz signal to 11 MHz. An
aggressive, 8 crystal SSB filter is used to allow only 2.4 KHz of bandwidth to pass through
to a balanced diode demodulator to produce base-band audio. The audio is amplified by a
single transistor before being applied to an LM386 to drive a speaker.

The uBITX uses termination insensitive amplifiers developed by Hayward and Kopski
(W7ZOI and K3NHI) in the signal chain.

The transmit function reverses the direction of signal flow. The diode demodulator now
acts as a modulator driven by a single transistor mic amplifier. The 11 Mhz double
sideband signal is stripped of one sideband through the crystal filter, amplified and fed to
the second mixer that up converts it to 45 MHz. The 45 MHz IF is then downconverted to
HF output by the same mixer that was used to upconvert during receive operation.

https://www.hfsignals.com/index.php/ubitx-v6/
https://www.hfsignals.com/index.php/ubitx-v6/
https://github.com/afarhan/sbitx

Building the Digital Codec Board

The digital codec board circuit is shown in Figure 6. You can build it on a pref board. The
WM8731 codec IC is an SSOP chip wiht 28 pins. A commonly available SSOP-28-to-DIP
adapter is used to mount the chip on the pref board. Alternatively, you can purchase the
Mikroelectronika Audio Codec Proto board and mount it on the preboard as it has much of
the audio circuitry of the digital codec board already pre soldered. It is available on
mouser.com (https://www.mouser.in/ProductDetail/932-MIKROE-506) for $19.

If you are scratch-building the digital codec board, keep the analog and digital ground lines
separate and join them only at the power supply point. Use extensive bypassing as close to
the power pins as you can. Refer to the WM8731 datasheet for details
(https://www.mouser.in/datasheet/2/76/WM8731_v4_9-1141834.pdf)

Modifying the uBITX

To software define the uBITX, some modifications have to be made to the original uBITX
(all versions). The Figure 10 shows the block diagram of the original uBITX and the
modifications needed to make it software defined.

https://www.mouser.in/datasheet/2/76/WM8731_v4_9-1141834.pdf
https://www.mouser.in/ProductDetail/932-MIKROE-506

The changes are :

0-30 MHz
LPF

IF AMP 1

1st RF
MIXER

AUDIO
(DE)MOD

45 MHz
15KHZ BW

FILTER

11.059M
SSB FLTR
(8 XTALS)

IF AMP 2

IF AMP 3IF AMP 4

MIC AMP

SPK AMP

2nd RF
MIXER

C
W

 K
E

Y

FN
 B

U
T
T
O

N

P
T
T

T
U

N
IN

G

ARDUINO

16x2 LCD

Si5351

3.5 - 5 MHz

7 - 10 MHz

14 - 21 MHz

21 - 30 MHz

LPF BANK
IRF510

IRF5102N3904 x 2

2N3904 x 2

2N3904 +
2N3904

CLK# 2
(Tunes 45-75 MHz)

CLK# 1
(33 MHz on USB/57 MHz on LSB)

CLK# 0
(11.059 MHz LSB)

CW KEY

CW SIDETONE

0-30 MHz
LPF

IF AMP 1

1st RF
MIXER

AUDIO
(DE)MOD

45 MHz
15KHZ BW

FILTER

27MHz
30KHz Bw
(8 XTALS)

IF AMP 2

IF AMP 3IF AMP 4

2nd RF
MIXER

TUNING

ARDUINO
(NEW CODE)

Si5351

3.5 - 5 MHz

7 - 10 MHz

14 - 21 MHz

21 - 30 MHz

LPF BANK
IRF510

IRF5102N3904 x 2

2N3904 x 2

2N3904 +
2N3904

CLK# 2
(Tunes 45-75 MHz)

CLK# 1
(18 MHz on USB)

CLK# 0

(27.031 MHz)

LEFT IN LEFT OUT

RIGHT OUTRIGHT IN

PREAMP

MIC AMP

MIC AMP

WM8731

24 bit, 96 KHZ, Codec

Raspberry Pi 4

7" Display

CONTROL

CW

PTT

THE ORIGINAL uBITX

THE MODIFIED uBITX

1. Replace the uBITX’s original 11.059 MHz crystal filter with 27 MHz filter shown in
Figure 3.

2. Modify the uBITX microphone amplifier to reduce the gain. Remove the C61 and
move C63 from Q6’s collector to emitter. (Figure 11)

3. Connect the output from the hot-end of the uBITX volume control (AUDIO1
connector, pin 4) to the AUDIO-DEMOD line of the digital codec board (J2
connector, pin 13). Use a shielded cable to avoid noise pickup

4. Connect the input of the uBITX microphone (AUDIO1 connector, pin 1) to the
AUDIO-MOD (J2 connector, pin 12). Use a shielded cable to avoid RF pick up on
transmit.

5. Connect a USB cable from the Raspberry Pi to the Arduino mounted on the Raduino
board of the uBITX.

6. Wire up the front panel with the two encoders, mic, ear, key from the J1 connector
on the digital codec board as per Figure 6.

The Figure 12 shows the overall wiring diagram.

Figure 11

Installing the software

Before installing any software, calibrate the uBITX clock with the standard uBITX
firmware.

There are two pieces of software we need.

1. Download the new Arduino sketch for uBITX SDR from
https://github.com/afarhan/ubitx_sdr and upload it to the Raduino, the uBITX’s
digital board.

2. Follow the instructions on https://github.com/afarhan/sbitx to install the SDR on
the Raspberry Pi.

It is recommended to install a shortcut to the SDR on the Program Menu of the desktop to
start it without needing a keyboard/mouse.

The digital codec board (Figure 6) can be assembled on a general purpose PCB. The codec
chip WM8731 can be soldered on an SSOP28-to-DIP adapter PCB and plugged into the 28
pin DIP socket on the perf PCB. Keep the digital and analog grounds separate.

It is highly recommended to power the digital codec board, the Raspberry Pi and the
display adapter together from the Raspberry Pi’s recommended power adapter. In the
latest build, we power it up with an LM2569 buck regulator that was bought online. The
regulator generated some switching noise which was cured by adding 33uh inductors on
the regulator’s input and output power lines.

Using the SDR

uBITX
Digital Board

(Raduino)

uBITX with:
1. 27 MHz filter
2. Modified Mic amplifier

Raspberry Pi

Digital Codec Board

7 inch
Touch Display

USB

USB

Tune Function

KEY

MIC

EAR

J1J2

ANT+12V

AUDIO1

+5V

+5V

Figure 12

https://github.com/afarhan/sbitx
https://github.com/afarhan/ubitx_sdr

The screen is laid out to work in a very simple way. To change the value of any control,
touch it and turn the function encoder to change its value. Toggle switches (like the
switching between VFOs or selecting a different band) work by a single touch.

The user interface was developed to be a compromise between physical buttons and a
software based user interface.

Many of the features of the SDR are still under development and they will be complete by
the time of presentation of this paper, expect some changes.

Conclusion

The aim of demystifying SDR and bringing it into the homebrew lab is very ambitious. It
clearly demands that the radio builder adapts to the digital world.

Many of us use circuit blocks like the Si5351 PLL or the ADE-1 mixer without delving into
their internals. One could take a similar approach to the SDRs. We didn’t really dive into
how the FFT does its magic we use it like it were a building block. This is a reasonable
approach to take until something stops working and then you get back to the texts.

The component count of adding features to a software defined radio is zero. You could spin
out ten different filters for your radio without heating up the soldering iron.

Conversely, a hybrid architecture like that described here provides a new way of building
high performance radios where the traditional challenges of dynamic range, low phase
noise oscillators are still paramount. Our analog skills are not outdated, they are now
evolved to make use of the immensely powerful and inexpensive computing power at our
disposal that provides flexible modulation and signal processing processing. Many
(including the author) would consider the time spent on a well performing AGC to be not
worth the effort of component count, etc. These are no longer valid arguments in the world
of software defined radios.

In this project, I must acknowledge that my own understanding is nominal and
incomplete. I have tried to get by with minimum theory and a lot of experimental work to
understand how things work. I have had the fortune of being mentored by Bob Larkin,
W7PUA and Phil Karn, KA9Q into the world of digital signal processing,

Indeed a substantial part of the code is due to Phil. You can download, read and use Phil’s
code from http://www.ka9q.net/ka9q-radio.tar.xz . It is will be a weekend well spent on
education. His code is readable and easy to follow. It is textbook perfect. I have borrowed
liberally and proudly from his KA9Q radio project. You should too.

http://www.ka9q.net/ka9q-radio.tar.xz

I studied the four papers written by Gerald Youngblood, K5SDR (SDR for the
masses, Parts 1 to 4), reading them over and over, slowly. The Paper 3 is the most compact
introduction to SDRs written from one homebrewer to another. I met him at Dayton and it
was a privilege to just hang around the Flexradio booth and listen to him.

I am indebted to Wes Hayward, W7ZOI for being the elmer that he has been to such
a large fellowship of homebrewers. His amazingly precise and clear enunciations of
principles and methods has made a whole generation of homebrewers out of people who
would have been wanderer/gatherers in the radio-land. The crystal filter that forms the
kernel of this project is due to his writings on filter design. They are available on

www.w7zoi.net.

My local gang of Lamakaan Amateur Radio Club has inspired and helped me with
this project. Sasi VU2XZ, Thomas VU2TJ, Amar, VU2AAP, Rahul VU3WJM, Venu
VU2BVB and Anil VU3DXA contributed to building and testing many of these circuits, on-
the-air tests, contribution of ideas, circuits, components. At LARC (Lamakaan Amateur
Radio Club) we are fortunate enough to have a really good bunch of radio amateurs with
curiosity and stamina for ambitious projects.

My really long and fruitful discussions with Raj VU2ZAP have immensly helped the
project. His unusual clarity of concepts helped cut through the fog many a times.

I am indebted to Bill Meara, N2CQR for agreeing to review this paper.

It sounds odd to be writing a conclusion for a software defined radio project. The
software is never complete, there is always room for another line of code. The challenge is
to keep it simple, modular. This project will hopefully make you pick up the virtual
soldering iron, your keyboard, and build something in software for your own radio.

References:

1. Experimental Methods in RF Design (Campbell, Hayward and Larkin), published by
ARRL, now out of print. Chapters 10 and 11. A complete introduction to DSP and SDRs in
textbook format with minimum theory and practical implementational details

2. The DSP-10: An All-Mode 2M Transceiver using DSP IF and PC Controlled Front-Panel
by Bob Larkin, QST Sept-Nov 1999. The sBITX is based on this architecture.
http://www.arrl.org/software-defined-radio.

3. A Software-Defined Radio for the Masses by Gerald Youngblood, AC5OG, QEX July
2002 to April 2003. The Paper III explains convolution SDRs.
http://www.arrl.org/software-defined-radio.

4. The DSP Guide by Stephen W. Smith. An easily understood online textbook on Digital
Signal Processing. www.dspguide.com

5. Phil Karn’s, KA9Q radio source code. http://www.ka9q.net/ka9q-radio.tar.xz

6. The uBITX, An All-band HF Transceiver by Ashhar Farhan
https://www.hfsignals.com/index.php/ubitx-v6/

7. Fourier Transform, Fourier Series, and frequency spectrum by Eugene Khutoryansky. A
very intuitive animation of Fourier Transforms.
https://www.youtube.com/watch?v=r18Gi8lSkfM

http://www.w7zoi.net/
https://www.youtube.com/watch?v=r18Gi8lSkfM
https://www.hfsignals.com/index.php/ubitx-v6/
http://www.ka9q.net/ka9q-radio.tar.xz
http://www.dspguide.com/
http://www.arrl.org/software-defined-radio
http://www.arrl.org/software-defined-radio

8. Filter Design Papers by Wes Hayward, W7ZOI. These are a series of a papers not
available in any journal. Some of them simplify the design process and others explain it
with a bit of maths. http://w7zoi.net/qststuff.html (They are at the bottom of the page.)

9. The sBITX source repository at https://github.com/afarhan/sbitx and the
corresponding firmware for the uBITX at https://github.com/afarhan/ubitx_sdr. Find the
latest source and installation instructions.

https://github.com/afarhan/ubitx_sdr
https://github.com/afarhan/sbitx
http://w7zoi.net/qststuff.html

